A new carbon storage technology works much faster than current methods without the harmful chemical accelerants they require.
Developed by researchers from the University of Texas at Austin, the carbon storage technology works through the ultrafast formation of carbon dioxide hydrates.
These unique ice-like materials can bury carbon dioxide in the ocean, preventing it from being released into the atmosphere.
Vaibhav Bahadur, a professor in the Walker Department of Mechanical Engineering who led the research, explained: “Hydrates offer a universal solution for carbon storage. For them to be a major piece of the carbon storage pie, we need the technology to grow them rapidly and at scale.
“We’ve shown that we can quickly grow hydrates without using any chemicals that offset the environmental benefits of carbon capture.”
Issues with widely used storage technologies
Carbon dioxide is the most common greenhouse gas and a major driver of climate change.
Carbon capture and sequestration takes carbon out of the atmosphere and stores it permanently. And it is seen as a critical aspect of decarbonising our planet.
Today, the most common carbon storage method involves injecting carbon dioxide into underground reservoirs. This technique has the dual benefits of trapping carbon and also increasing oil production.
However, this technique faces significant issues, including carbon dioxide leakage and migration, groundwater contamination and seismic risks associated with injection.
Many parts of the world also lack suitable geologic features for reservoir injection.
A ‘plan B’ for gigascale carbon storage
Hydrates represent a ‘plan B’ for gigascale carbon storage, Bahadur said, but they could become ‘plan A’ if some of the main issues can be overcome.
Until now, the process of forming these carbon-trapping hydrates has been slow and energy-intensive, holding it back as a large-scale means of carbon storage.
In the new study, researchers achieved a sixfold increase in the hydrate formation rate compared with previous methods.
The speed combined with the chemical-free process makes it easier to use these hydrates for mass-scale commercialisation.
The researchers used magnesium, which acts as a catalyst that eliminates the need for chemical promoters.
This is aided by the high flow rate bubbling of CO2 in a specific reactor configuration. This technology works well with seawater, which makes it easier to implement because it doesn’t rely on complex desalination processes to create fresh water.
Next steps
“Hydrates are attractive carbon storage options since the seabed offers stable thermodynamic conditions, which protects them from decomposing,” Bahadur said.
“We are essentially making carbon storage available to every country on the planet that has a coastline; this makes storage more accessible and feasible on a global scale and brings us closer to achieving a sustainable future.”
The implications of this breakthrough extend beyond carbon sequestration. Ultrafast formation of hydrates has potential applications in desalination, gas separation and gas storage, offering a versatile solution for various industries.
The researchers and UT have filed for a pair of patents related to the technology, and the team is considering a startup to commercialise it.